Thermal and Sensitivity Analysis of Multi-fin Devices
نویسندگان
چکیده
As device dimensions shrink into the nanometer range, power and performance constraints prohibit the longevity of traditional MOS devices in circuit design. A finFET, a quasi-planar double-gated device, has emerged as a replacement. FinFETs are formed by creating a silicon fin which protrudes out of the wafer, wrapping a gate around the fin, and then doping the ends of the fin to form the source and drain. Wider finFETs are formed using multiple fins between the source and drain regions. While finFETs provide promising electrostatic characteristics, they, like other ultra-thin body nano devices, have the potential to suffer from significant self heating. We study in this paper self heating in multi-fin devices. We first propose a distributed thermal channel model and validate it using ANSYS. We use this model to study the electro-thermal properties of multi-fin devices with both flared and rectangular channel extensions. We analyze variations in fin geometric parameters such as fin width, gate length, and fin and gate height, and we investigate the impact on thermal sensitivity. We utilize a thermal sensitivity metric, METS, to characterize device thermal robustness. We provide experimental data to validate our findings. Our work is novel as it is the first to address thermal issues within multi-fin devices. Furthermore, it provides an impetus for further research on the emerging area of electrothermal device and circuit design.
منابع مشابه
Multi-boiling Heat Transfer Analysis of a Convective Straight Fin with Temperature-Dependent Thermal Properties and Internal Heat Generation
In this study, by using the finite volume method, the heat transfer in a convective straight fin with temperature-dependent thermal properties and an internal heat generation under multi-boiling heat transfer modes are analyzed. In this regard, the local heat transfer coefficient is considered to vary within a power-law function of temperature. In the present study, the coexistence of all the b...
متن کاملHaar Wavelet Collocation Method for Thermal Analysis of Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation
In this study, the thermal performance analysis of porous fin with temperature-dependent thermal conductivity and internal heat generation is carried out using Haar wavelet collocation method. The effects of various parameters on the thermal characteristics of the porous fin are investigated. It is found that as the porosity increases, the rate of heat transfer from the fin increases and the th...
متن کاملPerformance, Thermal Stability and Optimum Design Analyses of Rectangular Fin with Temperature-Dependent Thermal Properties and Internal Heat Generation
In this study, we analysed the thermal performance, thermal stability and optimum design analyses of a longitudinal, rectangular fin with temperature-dependent, thermal properties and internal heat generation under multi-boiling heat transfer using Haar wavelet collocation method. The effects of the key and controlling parameters on the thermal performance of the fin are investigated. The therm...
متن کاملVariation of Parameters Method for Thermal Analysis of Straight Convective- Radiative Fins with Temperature Dependent Thermal Conductivity
In this study, thermal performance across straight convecting- radiating fin with temperature dependent thermal conductivity is considered. The variation of parameters (VPM) is adopted to analyze the nonlinear higher order differential equations arising due to thermal conductivity and heat transfer coefficient on temperature distribution. Pertinent parameters such as thermo geometric and radiat...
متن کاملThermal Analysis of Convective-Radiative Fin with Temperature-Dependent Thermal Conductivity Using Chebychev Spectral Collocation Method
In this paper, the Chebychev spectral collocation method is applied for the thermal analysis of convective-radiative straight fins with the temperature-dependent thermal conductivity. The developed heat transfer model was used to analyse the thermal performance, establish the optimum thermal design parameters, and also, investigate the effects of thermo-geometric parameters and thermal conducti...
متن کامل